THE PERIODS OF EICHLER INTEGRALS FOR KLEINIAN GROUPS

BY

HIROKI SATO

ABSTRACT. We shall give period relations and inequalities for Eichler integrals for Kleinian groups Γ which have simply connected components of of the region of discontinuity of Γ . These are a generalization of those for abelian integrals. By using the period inequality, we shall give an alternate proof of a result of Kra.

0. Introduction. Let Γ be a nonelementary finitely generated Kleinian group, and Δ_1 a simply connected component of the region of discontinuity Ω of Γ .

M. Eichler [4], L V. Ahlfors [2], L. Bers [3] and I. Kra [5], [6] have represented periods of Eichler integrals as polynomials of degree at most 2q - 2, $q \ge 2$ being an integer. By this method, however, period relations for Eichler integrals are very complicated even when Γ is a Fuchsian group of the first kind (Eichler [4]). On the other hand, G. Shimura [7] has regarded the periods as column number vectors of length 2q - 1. In his paper he gave a certain period relation for Fuchsian groups.

By using Shimura's idea, we shall give period relations and inequalities for Eichler integrals for Kleinian groups. These are a generalization of those for abelian integrals. The main results in this paper are Theorems 1 and 2.

We shall state some notations in $\S 1$ and some lemmas in $\S 2$. In $\S 3$ we shall prove Theorem 1 and in $\S 4$ we shall state the period relations and inequalities, and give an alternate proof for the Kra result [5].

The author wishes to express his deep appreciation to Professor I. Kra, K. Mathumoto and K. Oikawa for encouragement and advice.

1. Notation. Throughout this paper Γ denotes a nonelementary finitely generated Kleinian group with a simply connected component Δ_1 of the region of discontinuity Ω of Γ . We denote by Λ the limit set, $\lambda(z)|dz|$ the Poincaré metric on Ω . Let $q \geq 1$ be an integer. Set $\Delta = \bigcup_{A \in \Gamma} A(\Delta_1)$. It is a well-known fact (cf. [1]) that Δ/Γ is a Riemann surface which is obtained from a compact Riemann surface, denoted by $\overline{\Delta/\Gamma}$, by deleting a finite number of points. It is

Received by the editors February 1, 1972 and, in revised form, January 16, 1973. AMS (MOS) subject classifications (1970). Primary 30A58; Secondary 10D15, 20H10, 32N10.

Key words and phrases. Eichler integrals, Kleinian groups, cohomology group, potential, Beltrami coefficients, period relation and inequality.

also known that Δ is a (disconnected) covering surface of Δ/Γ which ramifies over only a finite number of points.

We denote by \mathbb{R}^n and \mathbb{C}^n n-dimensional vector spaces over \mathbb{R} and \mathbb{C} , respectively, $n \geq 0$ being an integer. We regard an element in \mathbb{R}^n (\mathbb{C}^n) as a matrix with n rows and 1 column. We consider an element of Γ as a matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with ad-bc=1. We denote by $GL(m,\mathbb{C})$ the group of $m \times m$ invertible matrices over \mathbb{C} . Let $\binom{u}{\nu}$ be a vector in \mathbb{C}^2 . For each n=2q-2, we denote by $\binom{u}{\nu}^n$ the vector in \mathbb{C}^{n+1} whose components are u^n , u^{n-1} , \cdots , uv^{n-1} , v^n , where $\binom{u}{\nu}^0=1$. For $A \in \Gamma$ we set $\binom{uA}{\nu A} = A\binom{u}{\nu}$ and define $M(A) \in GL(n+1,\mathbb{C})$ by

$$\binom{u_A}{v_A}^n = M(A)\binom{u}{v}^n.$$

The following is due to Ahlfors [1]. Let $\Delta/\Gamma=S-\{p\}$ where S is a Riemann surface and $p\in S$. If there is a punctured neighborhood M(p) of p such that π is unramified over M(p), then there exists a parabolic transformation $A\in \Gamma$ with fixed point $s\in \Lambda$, and there is a Möbius transformation B with the following properties: (1) $B(\infty)=s$ and $B^{-1}AB(z)=z+1$, $z\in \mathbb{C}$, (2) $B^{-1}(\Delta_1)$ contains a half-plane $U_{B^{-1}AB}=\{z\in \mathbb{C}|\mathrm{Im}\;z>c\}$, for some c>0, (3) two points z_1 and z_2 of $B(U_{B^{-1}AB})$ are equivalent under Γ if and only if $z_2=A^m(z_1)$ for some integer m, and (4) the image of $B(U_{B^{-1}AB})$ under π is a deleted neighborhood of p homeomorphic to a punctured disk. We call $W_A=B\{z\in \mathbb{C}|\ 0\leq \mathrm{Re}\;z<1$, $\mathrm{Im}\;z>c\}$ a cusped region belonging to p.

A mapping $\chi\colon \Gamma\to \mathbb{C}^{2q-1}$ is called a cocycle if $\chi_{AB}={}^tM(B)\chi_A+\chi_B$ for $A,B\in\Gamma$, where ${}^tM(B)$ is the transposed matrix of M(B). A cocycle $\chi\colon\Gamma\to\mathbb{C}^{2q-1}$ is called a coboundary if there exists $V\in\mathbb{C}^{2q-1}$ such that $\chi_A={}^tM(A)V-V$ for any $\chi_A\in\mathbb{C}^{2q-1}$, $A\in\Gamma$. Then the first cohomology group $H^1(\Gamma,\mathbb{C}^{2q-1},M)$ is the space of cocycles factored by the space of coboundaries. A cohomology class $P\in H^1(\Gamma,\mathbb{C}^{2q-1},M)$ is called Δ -parabolic if, for every parabolic transformation $B\in\Gamma$ corresponding to a puncture on Δ/Γ , there is a $V\in\mathbb{C}^{2q-1}$ such that $P_B={}^tM(B)V-V$ for some (and hence every) cocycle that represents P. The space of Δ -parabolic cohomology class is denoted by $PH^1_\Delta(\Gamma,\mathbb{C}^{2q-1},M)$.

For an $m \times n$ matrix $N = (a_{ij})$ $(i = 1, 2, \dots, n; j = 1, 2, \dots, m)$ matrices \overline{N} and \widehat{N} are defined by $\overline{N} = (\overline{a}_{ij})$ and $\widehat{N} = (a_{m-i+1}, j+1)$, respectively, where \overline{a}_{ij} is the complex conjugate of a_{ij} .

A holomorphic function ϕ on Δ is called an automorphic form of weight (-2q) on Δ , $q \ge 1$, if $\phi(Az)A'(z)^q = \phi(z)$ for all $A \in \Gamma$. For $q \ge 2$ an automorphic form ϕ of weight (-2q) on Δ is called integrable if

$$\iint_{\Delta/\Gamma} \lambda(z)^{2-q} |\phi(z)| \, dx \, dy < \infty.$$

We denote the Banach space of integrable automorphic forms on Δ by $A_q(\Delta, \Gamma)$. The form ϕ is called bounded if

$$\sup \{\lambda(z)^{-q} |\phi(z)| | z \in \Delta \} < \infty.$$

The Banach space of bounded automorphic forms on Δ is denoted by $B_q(\Delta, \Gamma)$. For $\phi \in A_q(\Delta, \Gamma)$ and $\psi \in B_q(\Delta, \Gamma)$, we define the Petersson inner product by

$$(\phi, \psi) = \iint_{\Delta/\Gamma} \lambda(z)^{2-2q} \phi(z) \overline{\psi(z)} dx dy, \quad q \geq 2.$$

For q=1 we shall interpret $A_1(\Delta, \Gamma)$ and $B_1(\Delta, \Gamma)$ as the Hilbert space of square integrable automorphic forms of weight (-2) with inner product defined by

$$(\phi, \psi) = \iint_{\Delta/\Gamma} \phi(z) \overline{\psi(z)} dx dy.$$

A holomorphic function E on Δ is called a holomorphic Eichler integral of order (1-q) on Δ if $E(Az)A'(z)^{1-q}-E(z)\in\Pi_{2q-2}$ on Δ , for all $A\in\Gamma$, where Π_{2q-2} is the vector space of polynomials of degree at most 2q-2. We shall say that an Eichler integral E of order 1-q is bounded if $\phi=D^{2q-1}E\in B_q(\Delta,\Gamma)$, where D means differentiation with respect to z. The projection of ϕ to Δ/Γ is then a meromorphic q-differential on $\overline{\Delta/\Gamma}$ with order $\geq -(q-1)$ at the punctures on Δ/Γ . An Eichler integral E on Δ is called quasi-bounded if the projection of $D^{2q-1}E$ to Δ/Γ can be extended as a meromorphic q-differential to $\overline{\Delta/\Gamma}$ whose order at a puncture is $\geq -q$. The space of bounded Eichler integrals modulo Π_{2q-2} will be denoted by $PE_{1-q}(\Delta,\Gamma)$. Similarly $E_{1-q}(\Delta,\Gamma)$ denotes the space of quasi-bounded Eichler integrals modulo Π_{2q-2}

Let $f \in E_{1-q}(\Delta, \Gamma)$ and E a representative of f and set $D^{2q-1}E = \phi$. We set

$$f_{n-j}(z) = \sum_{k=0}^{j} ((-1)^{k} j! / (j-k)!) z^{j-k} D^{2q-2-k} E(z)$$

and set

(1)
$$f(z) = \begin{pmatrix} f_0(z) \\ f_1(z) \\ \vdots \\ f_n(z) \end{pmatrix}, \quad I' = \begin{pmatrix} 1 & 0 \\ -nC_1 & 0 \\ & nC_2 \\ 0 & & -nC_{n-1} \end{pmatrix}$$

 $\mathfrak{F}(z) = I \widetilde{f}(z)$ and $\omega(z) = \phi(z) \binom{z}{1}^n dz$, where $\binom{C}{i} = n! / (n-1)! i!$. We call f(z) and $\mathfrak{F}(z)$ column function vectors of length n+1 associated with E. For each $A \in \Gamma$ we define X_A and P_A by

$$X_A = f(Az) - M(A)f(z)$$

and

$$P_{A} = {}^{t}M(A)\Re(Az) - \Re(z)$$

and denote them by $\operatorname{pd}_A(\mathfrak{F})$ and $\operatorname{pd}_A(\mathfrak{F})$, respectively. We call X_A and P_A periods of \mathfrak{F} and \mathfrak{F} for $A \in \Gamma$, respectively. The mapping $A \mapsto P_A$ satisfies $P_{AB} = {}^tM(B)P_A + P_B$ for any $A, B \in \Gamma$, as is easily seen. Then a cohomology class is defined, which depends only on f and not f. We define by $F_{1-q}(\Delta, \Gamma, M)$ the space of all F(x) modulo F(x) similarly we define F(x) and F(x) thus by the obvious way we may define a mapping

$$\alpha: E_{1-q}(\Delta, \Gamma, M) \to H^{1}(\Gamma, \mathbb{C}^{2q-1}, M)$$

and we know that $\alpha(PE_{1-q}(\Delta, \Gamma, M)) \subset PH^1(\Gamma, \mathbb{C}^{2q-1}, M)$ by the method similar to that of Kra [6].

If $a_1, a_2, \dots, a_{2q-1}$ are distinct points in Λ , and $\psi \in B_q(\Delta, \Gamma)$, then we call

$$\frac{(z-a_1)\cdots(z-a_{2q-1})}{2\pi i}\iint\limits_{\Omega}\frac{\lambda(\zeta)^{2-2q}\overline{\psi(\zeta)}d\zeta\wedge d\overline{\zeta}}{(\zeta-z)(\zeta-a_1)\cdots(\zeta-a_{2q-1})},$$

 $z \in \mathbb{C}$, $q \ge 2$, a potential for ψ , and denote it by $\operatorname{Pot}(\psi)$. For $A \in \Gamma$, we define a period of potential of $\operatorname{Pot}(\psi)$ by setting

$$\operatorname{Pd}_A \operatorname{Pot}(\psi)(z) = \operatorname{Pot}(\psi)(Az)A'(z)^{1-q} - \operatorname{Pot}(\psi)(z), \quad z \in \mathbb{C}.$$

It is easily seen that $\operatorname{Pot}(\psi) \mid \Omega - \Delta \in PE_{1-q}(\Omega - \Delta, \Gamma)$ for $\psi \in B_q(\Delta, \Gamma)$. We set

$$g_{n-j}(z) = \sum_{k=0}^{j} ((-1)^k j! / (j-k)!) z^{j-k} D^{2q-2-k} \operatorname{Pot}(\psi)(z), \quad z \in \Omega - \Delta.$$

We set

(2)
$$g(z) = \begin{pmatrix} g_0(z) \\ g_1(z) \\ \vdots \\ g_n(z) \end{pmatrix}$$

and set $\mathfrak{G}(z) = l'\mathfrak{g}(z)$. We call $\mathfrak{g}(z)$ and $\mathfrak{G}(z)$ column function vectors of length n+1 associated with $Pot(\psi)$.

For each $A \in \Gamma$, we define Y_A and Q_A by

$$Y_A = g(Az) - M(A)g(z), \quad z \in \Omega - \Delta,$$

and

$$Q_A = {}^t M(A) \otimes (Az) - \otimes (z), \quad z \in \Omega - \Delta,$$

and denote them by $\operatorname{pd}_A(\mathfrak{g})$ and $\operatorname{pd}(\mathfrak{G})$, respectively. We call Y_A and Q_A periods of \mathfrak{g} and \mathfrak{G} for $A \in \Gamma$, respectively. The mapping $A \mapsto Q_A$ satisfies $Q_{AB} = {}^tM(B)Q_A + Q_B$, for any $A, B \in \Gamma$, as is easily seen. Then a cohomology class is defined, which depends only on ψ . The definition of Y_A, Q_A , etc., applies to the case $\Omega - \Delta \neq \emptyset$. These functions for the remaining case will be defined in the remark after Lemma 4. Similarly as above we define

$$\beta^*: B_q(\Delta, \Gamma) \to H^1(\Gamma, \mathbb{C}^{2q-1}, M).$$

Let Γ_1 be a subgroup of Γ which keeps Δ_1 invariant, and let b be a conformal mapping from Δ_1 on the upper half-plane U. Set $\Gamma_1' = b\Gamma_1b^{-1}$. Then Γ_1' is a fuchsian group of the first kind. Let ω_0 be the fundamental region defined by Shimura [7] for Γ_1' in U, then we let its boundary consist of sides $E_{A_1'}$, $E_{B_1'}$, $-A_1'(E_{A_1'})$, $-B_1'^{-1}(E_{B_1'})$, \cdots , $E_{A_g'}$, $E_{B_g'}$, $-A_g'(E_{A_g'})$, $-B_g'^{-1}(E_{B_g'})$, $E_{C_1'}$, $-C_1'(E_{C_1'})$, \cdots , $E_{C_1'}$, $-C_1'(E_{C_1'})$, $E_{C_1'}$, $-D_1'(E_{D_1'})$, $E_{C_1'}$, $-D_1'(E_{D_1'})$, where A_A' , A_A' , A_A' and A_A' are generators of A_A' with relations A_A' , A_A' and A_A' and A_A'' and A_A''' and

2. Lemmas. In this section we state some lemmas which are necessary to prove the subsequent theorems. Many of the properties in Lemmas 2, 3, 4 and 5 below can be sumarized by saying that there is an isomorphism $\Pi_{2q-2} \to \mathbb{C}^{2q-1}$ which commutes with the action of Γ . However we shall state them for the sake of later use. For each $A = \binom{a \ b}{c \ d} \in \Gamma$, we denote by A(z) = (az + b)/(cz + d). We set n = 2q - 2 once and for all.

Lemma 1. For $A \in \Gamma$

$$M(A) = I'^{-1}(\widetilde{t_M(A)})^{-1}I'.$$

Proof. We set $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, ad - bc = 1. The (k, l) element of M(A) is

$$\sum_{i+j=l-1}^{2q-1-k} C_{i k-1} C_{j} a^{2q-k-i-1} c^{k-1-j} b^{i} d^{j}.$$

The (k, l) element of M(A) is the (l, k) element of $^{l}M(A)$, which is the (2q - l, k)2q-k) element of ${}^{t}M(A)$. Hence the (2q-l, 2q-k) element of ${}^{t}M(A)I'$ is

(3)
$$(-1)^{2q-k-1} \sum_{2q-2^{C_{2q-k-1}} \sum_{j+j-l-1} 2q-1-k^{C_{i}} k-1^{C_{j}} a^{2q-1-k-i} c^{k-1-j} b^{i} d^{j}$$

On the other hand the (2q - l, 2q - k) element of $I'M(A^{-1})$ is

$$(4) \atop (-1)^{2q-l-1} \sum_{2q-2} C_{2q-l-1} \sum_{i+j=2q-1-k} {}_{l-1}C_{i} \ {}_{2q-l-1}C_{j}d^{l-1-i}(-c)^{2q-l-1-j}(-b)^{i}a^{j}.$$

We easily see that (3) and (4) are the same, that is,

$$(\widetilde{t_M(A)})I' = I'M(A^{-1}).$$

For the proof of some properties in Lemmas 2 through 4 below, see Shimura [7].

Lemma 2. For $A, B \in \Gamma$,

- $(1) \ ({}^{A}_{1})^{n} A'(z)^{1-q} = M(A)({}^{z}_{1})^{n},$
- (2) M(AB) = M(A)M(B),
- (3) $M(A^{-1}) = M(A)^{-1}$.

Lemma 3. Let $f \in E_{1-q}(\Delta, \Gamma)$ and E a representative of f, and $\psi \in B_q(\Delta, \Gamma)$. Let f(z), $\omega(z)$, g(z), X_A , Y_A , P_A and Q_A be defined as in §1 with respect to E and ψ . Then, for A, $B \in \Gamma$,

- (1) $\omega(Az) = M(A)\omega(z)$,
- (2) $df(z) = \omega(z)$,
- (3) $E(z) = (1/n!)^{t} f(z) I'(\frac{1}{z})^{n}, z \in \Delta,$
- (4) $E(Az)A'(z)^{1-q} E(z) = (1/n!) {}^{t}P_{A}(z)^{n}, z \in \Delta,$
- (5) $X_{AB} = X_A + M(A)X_B$,
- (6) $P_{ot}(\psi)(z) = (1/n!)^{-1}g(z)l'(\frac{1}{z})^n, z \in \mathbb{C},$
- (7) $\operatorname{Pot}(\psi)(Az)A'(z)^{1-q} \operatorname{Pot}(\psi)(z) = (1/n!) {}^{t}Q_{A}(z)^{n}, z \in \Omega \Delta,$

- (8) $Y_{AB} = Y_A + M(A)Y_B$, (9) $P_A = I'M(A)^{-1}X_A$, $X_A = M(A)I'^{-1}P_A$, (10) $Q_A = I'M(A)^{-1}Y_A$, $Y_A = M(A)I'^{-1}Q_A$.

By (3) of Lemma 3 we have

Lemma 4. For each $A \in \Gamma$, X_A , P_A , Y_A and Q_A are all number vectors of length 2q-1.

This means that

$$Pot(\psi)(Az)A'(z)^{1-q} - Pot(\psi)(z) = (1/n!)^{-1}Q_A(z)^n$$

for $z \in \mathbb{C}$ and $A \in \Gamma$.

Remark. The above Q_A is defined in the case of $\Omega \neq \Delta$. However, since $\operatorname{Pot}(\psi)(Az)A'(z)^{1-q} - \operatorname{Pot}(\psi)(z) = \nu_A(z), \ \nu_A \in \Pi_{2q-2}, \ A \in \Gamma, \ z \in \Gamma$, we may define Q_A' by $\nu(A) = (1/n!) \ ^t Q_A'(\frac{z}{1})^n$ with $Q_A' \in \Gamma^{2q-1}$. Then we easily see that $Q_{AB}' = {}^t M(B)Q_A' + Q_{B'}'$, $A, B \in \Gamma$. We set $Y_A' = M(A)I'^{-1} \widetilde{Q}_A'$. Hereafter we take Q_A to be Q_A and Y_A to be Y_A' , and note that these definitions agree with previous ones and are valid in the case $\Omega = \Delta$ as well.

Noting the fact pointed out in the first part of this section, we have the following from Kra's decomposition theorem [5], [6].

Lemma 5. (1)
$$H^1(\Gamma, C^{2q-1}, M) = \alpha(E_{1-q}(\Delta, \Gamma, M) + \beta^*(B_q(\Delta, \Gamma));$$

(2) $\beta^*(B_q(\Delta, \Gamma)) \subset PH^1_{\Lambda}(\Gamma, C^{2q-1}, M).$

3. The main theorem.

Theorem 1. Let Γ be a nonelementary finitely generated Kleinian group and Δ_1 a simply connected component of Ω and set $\Delta = \bigcup_{A \in \Gamma} A(\Delta_1)$. Let $f \in E_{1-q}(\Delta, \Gamma)$, E an arbitrary representative of f and set $D^{2q-1}E = \phi$, $q \ge 2$. Let $\psi \in B_q(\Delta, \Gamma)$. Let f(z) and g(z) be column function vectors (1) and (2) associated with E and $Pot(\psi)$, respectively, and set $\mathfrak{G}(z) = I(g(z))$. Let $pd_A(f(z)) = X_A(g(z))$ and $pd_A(g(z)) = Q_A(g(z))$ for each $A \in \Gamma$. Then

$$2in!(\phi, \psi) = \sum_{\lambda=1}^{g} {}^{t}Q_{A_{\lambda}}[X_{A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1}} - X_{T_{\lambda-1}}]$$

$$+ \sum_{\lambda=1}^{g} {}^{t}Q_{B_{\lambda}^{-1}}[X_{B_{\lambda}A_{\lambda}T_{\lambda-1}} - X_{A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1}}]$$

$$+ \sum_{\mu=1}^{j} {}^{t}Q_{C_{\mu}} \left[e_{\mu}^{-1} \sum_{m=1}^{e_{\mu}-1} X_{C_{\mu}^{m}} - X_{C_{\mu-1}\cdots C_{1}T_{g}} \right]$$

$$- \sum_{\nu=1}^{k} {}^{t}Q_{D_{\nu}}[X_{D_{\nu-1}\cdots D_{1}C_{j}\cdots C_{1}T_{g}}] + \sum_{\nu=1}^{k} {}^{t}Q_{D_{\nu}}[(s_{\nu}), s_{\nu}]$$

where s_{ν} is a cusp point of D_{ν} $(\nu = 1, 2, \dots, k)$.

Proof. By (7) of Lemma 3 and Lemma 4, for every $A \in \Gamma$,

(5)
$$\operatorname{Pot}(\psi)(Az)A'(z)^{1-q} - \operatorname{Pot}(\psi)(z) = (1/n!)^{t}Q_{A}\binom{z}{1}^{n}, \quad z \in \mathbb{C}.$$

Let $\eta(z)$ be a C^{∞} -function on Δ defined by Kra [5], [6], that is, (1) $0 \le \eta \le 1$; (2) for each $z \in \Delta$, there is a neighborhood U(z) of z and a finite subset J of Γ such that $\eta(A(U(z))) = 0$ for each $A \notin J$; (3) $\Sigma_{\gamma \in \Gamma} \eta(\gamma z) = 1$, $z \in \Delta$; and (4) if $U_A \in \omega_0$ is a cusped region belonging to a puncture on Δ/Γ and A is the corresponding transformation, then $\eta \mid B(U_A) = 0$ all $B \in \Gamma - \{1, A\}$.

We set

$$\Theta(z) = \begin{pmatrix} \theta_0(z) \\ \theta_1(z) \\ \vdots \\ \theta_n(z) \end{pmatrix} = -\frac{1}{n!} \sum_{\gamma \in \Gamma} \eta(\gamma z) Q_{\gamma} + \frac{1}{n!} \sum_{\nu=1}^k \chi_{\nu}(z) \left\{ \sum_{\gamma \in \Gamma} \eta(\gamma z) \ ^t \mathbf{M}(\gamma) V_{\nu} \right\},$$

where V_{ν} is defined by ${}^tM(D_{\nu})V_{\nu} - V_{\nu} = P_{D_{\nu}}$ $(\nu = 1, \dots, k)$ and we let $\chi_{\nu} \in C^{\infty}(\Delta, \Gamma)$ be such that $0 \le \chi_{\nu} \le 1$, $\chi_{\nu} = 1$ in $U_{D_{\nu}}$ and $\chi_{\nu} = 0$ in $\bigcup_{i \ne \nu} U_{D_i}$ $(\nu = 1, \dots, k)$. Then

$$\begin{split} & {}^{t}\mathsf{M}(A)\Theta(Az) - \Theta(z) \\ & = -\frac{1}{n!} \, {}^{t}\mathsf{M}(A) \, \sum_{\gamma \in \Gamma} \eta(\gamma Az) Q_{\gamma} + \frac{1}{n!} \, {}^{t}\mathsf{M}(A) \, \sum_{\nu=1}^{k} \chi_{\nu}(Az) \left(\sum_{\gamma \in \Gamma} \eta(\gamma Az) \, {}^{t}\mathsf{M}(\gamma) V_{\nu} \right) \\ & + \frac{1}{n!} \, \sum_{\gamma \in \Gamma} \eta(\gamma z) Q_{\gamma} - \frac{1}{n!} \, \sum_{\nu=1}^{k} \chi_{\nu}(z) \left(\sum_{\gamma \in \Gamma} \eta(\gamma z) \, {}^{t}\mathsf{M}(\gamma) V_{\nu} \right) \\ & = -\frac{1}{n!} \, \sum_{\gamma \in \Gamma} \eta(\gamma Az) (Q_{\gamma A} - Q_{A}) + \sum_{\gamma \in \Gamma} \frac{1}{n!} \, \eta(\gamma z) Q_{\gamma} \\ & + \frac{1}{n!} \, \sum_{\nu=1}^{k} \chi_{\nu}(z) \left(\sum_{\gamma \in \Gamma} \eta(\gamma Az) \, {}^{t}\mathsf{M}(\gamma A) V_{\nu} \right) \\ & - \frac{1}{n!} \, \sum_{\nu=1}^{k} \chi_{\nu}(z) \left(\sum_{\gamma \in \Gamma} \eta(\gamma z) \, {}^{t}\mathsf{M}(\gamma) V_{\nu} \right) \\ & = \frac{1}{n!} \, Q_{A}, \end{split}$$

for each $A \in \Gamma$.

We set

$$\mu(z) = \begin{pmatrix} \mu_0(z) \\ \mu_1(z) \\ \vdots \\ \mu_n(z) \end{pmatrix} = \begin{pmatrix} \partial \theta_0(z)/\partial \overline{z} \\ \partial \theta_1(z)/\partial \overline{z} \\ \vdots \\ \partial \theta_n(z)/\partial \overline{z} \end{pmatrix}.$$

Then we easily see that, for $A \in \Gamma$,

$${}^{\ell}M(A)\mu(Az)\overline{A'(z)}=\mu(z), \quad z\in\Delta.$$

Thus for $\phi = D^{2q-1}E$,

$$\iint\limits_{\Delta/\Gamma} \phi(z) \, {}^{t}\mu(z) {r \choose 1}^{n} dz \wedge d\overline{z}$$

is well defined.

Next we show that

(6)
$$\iint_{\omega_0} \phi(z)^{t} \mu(z) {z \choose 1}^n dz \wedge d\overline{z} - \iint_{\omega_0} \phi(z) \lambda(z)^{2-2q} \overline{\psi(z)} dz \wedge d\overline{z} = 0.$$

For, since for $A \in \Gamma$,

$${}^{t}\Theta(Az)\binom{Az}{1}^{n}A'(z)^{1-q}-{}^{t}\Theta(z)\binom{z}{1}^{n}=\frac{1}{n!}{}^{t}Q_{A}\binom{z}{1}^{n}, \quad z \in \Delta,$$

by (5) we have

(7)
$$\left\{ {}^{t}\Theta(Az) {Az \choose 1}^{n} - \operatorname{Pot}(\psi)(Az) \right\} A'(z)^{1-q} = {}^{t}\Theta(z) {z \choose 1}^{n} - \operatorname{Pot}(\psi)(z),$$

 $z \in \Delta$. By using Stokes' theorem after Bers' trick [3], (6) is equal to

(8)
$$\int_{\partial\omega_0} \left\{ {}^t \Theta(z) {z \choose 1}^n - \operatorname{Pot} (\psi)(z) \right\} \phi(z) dz.$$

This is equal to zero, in fact, since its integrals along two identified sides cancel each other and, therefore, (8) is equal to zero, that is,

$$-2i(\phi, \psi) = \iint_{\omega_0} \phi(z) t \mu(z) {z \choose 1}^n dz \wedge d\overline{z}.$$

On the other hand,

$$\iint_{\omega_0} {}^t \mu(z) \phi(z) \binom{z}{1}^n dz \wedge d\overline{z} = \int_{\partial \omega_0} {}^t \Theta(z) \binom{z}{1}^n \phi(z) dz = \int_{\partial \omega_0} {}^t \Theta(z) \omega(z),$$

where $\omega(z) = \phi(z) (\frac{z}{1})^n dz$. Then

$$\begin{split} \int_{\partial \omega_0} {}^t \Theta(z) \omega(z) &= \int_{\partial \omega_0} {}^t \Theta(z) \, d\, f(z) \\ &= \sum_{\lambda=1}^g \left(\int_{E_{A_\lambda}} {}^t \Theta(z) \, d\, f(z) - \int_{A_\lambda(E_{A_\lambda})} {}^t \Theta(z) \, d\, f(z) \right) \\ &+ \sum_{\lambda=1}^g \left(\int_{E_{B_\lambda}} {}^t \Theta(z) \, d\, f(z) - \int_{B_\lambda^{-1}(E_{B_\lambda})} {}^t \Theta(z) \, d\, f(z) \right) \\ &+ \sum_{\mu=1}^j \left(\int_{E_{C_\mu}} {}^t \Theta(z) \, d\, f(z) - \int_{C_\mu(E_{C_\mu})} {}^t \Theta(z) \, d\, f(z) \right) \\ &+ \sum_{\lambda=1}^k \left(\int_{E_{D_\lambda}} {}^t \Theta(z) \, d\, f(z) - \int_{D_\nu(E_{D_\lambda})} {}^t \Theta(z) \, d\, f(z) \right). \end{split}$$

Now for any element A of $\{A_{\lambda}, B_{\lambda}^{-1}, C_{\mu}, D_{\nu} (\lambda = 1, \dots, g; \mu = 1, \dots, j; \nu = 1, \dots, k),$

$$\begin{split} \int_{A(E_A)} {}^t\!\Theta(z) \, d\tilde{\gamma}(z) &= \int_{E_A} {}^t\!\Theta(A(z)) d\tilde{\gamma}(A(z)) \\ &= \int_{E_A} \left\{ {}^t({}^t\!M(A^{-1})\!\Theta(z)) + \frac{1}{n!} \, {}^t({}^t\!M(A^{-1})\!Q_A) \, d(M(A)\tilde{\gamma}(z) + X_A) \right\} \\ &= \int_{E_A} {}^t\!\Theta(z) \, d\tilde{\gamma}(z) + \int_{E_A} \frac{1}{n!} \, {}^t\!Q_A d\tilde{\gamma}(z), \end{split}$$

so that

$$\begin{split} \int_{\partial\omega_0} \, {}^t\!\Theta(z)\omega(z) &= - \left\{ \sum_{\pmb{\lambda}} \left(\int_{E_{A_{\pmb{\lambda}}}} \frac{1}{n!} \, {}^t\!Q_A \, d\tilde{\uparrow}(z) + \int_{E_{B_{\pmb{\lambda}}}} \frac{1}{n!} \, {}^t\!Q_{B_{\pmb{\lambda}}^{-1}} \, d\tilde{\uparrow}(z) \right) \right. \\ &+ \sum_{\mu} \int_{E_{C_{\mu}}} \frac{1}{n!} \, {}^t\!Q_{C_{\mu}} d\tilde{\uparrow}(z) + \sum_{\nu} \int_{E_{D_{\nu}}} \frac{1}{n!} \, {}^t\!Q_{D_{\nu}} d\tilde{\uparrow}(z) \right\}. \end{split}$$

Denote by u_0 the starting point of E_{A_1} . Then

$$2in!(\phi, \psi) = \sum_{\lambda=1}^{g} {}^{t}Q_{A_{\lambda}}[M(A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1}) - M(T_{\lambda-1})] f(u_{0})$$

$$+ \sum_{\lambda=1}^{g} {}^{t}Q_{B_{\lambda}^{-1}}[M(B_{\lambda}A_{\lambda}T_{\lambda-1}) - M(A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1})] f(u_{0})$$

$$+ \sum_{\mu=1}^{j} {}^{t}Q_{C_{\mu}}[M(C_{\mu-1} \cdots C_{1}T_{g})] f(u_{0})$$

$$- \sum_{\nu=1}^{k} {}^{t}Q_{D_{\nu}}[M(D_{\nu-1} \cdots D_{1}C_{j} \cdots C_{1}T_{g})] f(u_{0})$$

$$+ \sum_{\lambda=1}^{g} {}^{t}Q_{A_{\lambda}}[X_{A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1}} - X_{T_{\lambda-1}}]$$

$$+ \sum_{\lambda=1}^{g} {}^{t}Q_{B_{\lambda}^{-1}}[X_{B_{\lambda}A_{\lambda}T_{\lambda-1}} - X_{A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1}}]$$

$$+ \sum_{\mu=1}^{j} {}^{t}Q_{C_{\mu}}[e_{\mu}^{-1} \sum_{m=1}^{e_{\mu}-1} X_{C_{\mu}^{m}} - X_{C_{\mu-1}\cdots C_{1}T_{g}}]$$

$$- \sum_{\nu=1}^{k} {}^{t}Q_{D_{\nu}}[X_{D_{\nu-1}\cdots D_{1}C_{j}\cdots C_{1}T_{g}}] + \sum_{\nu=1}^{k} {}^{t}Q_{D_{\nu}}f(s_{\nu}).$$

For, let t_{μ} be a fixed point for C_{μ} $(\mu = 1, \dots, j)$ in $\overline{\omega}_0$. Then

$$\mathsf{f}(t_{\mu}) = \mathsf{f}(C_{\mu}^{m}(t_{\mu})) = \mathsf{M}(C_{\mu}^{m})\mathsf{f}(t_{\mu}) + X_{C_{tt}^{m}}$$

and

$$e_{\mu} f(t_{\mu}) = \sum_{m=0}^{e_{\mu}-1} M(C_{\mu}^{m}) f(t_{\mu}) + \sum_{m=0}^{e_{\mu}-1} X_{C_{\mu}^{m}}.$$

On the other hand

$$0 = Q_{C_{\mu}^{e_{\mu}}} = \sum_{m=0}^{e_{\mu}-1} {}^{t}M(C_{\mu}^{m})Q_{C_{\mu}}.$$

Hence

We have

$$\begin{split} \sum_{\mu} \ ^{t}Q_{C_{\mu}} & \lceil (C_{\mu-1} \cdots C_{1}T_{g}(u_{0})) \\ &= \sum_{\mu} \ ^{t}Q_{C_{\mu}} & M(C_{\mu-1} \cdots C_{1}T_{g}) \\ & \lceil (u_{0}) + \sum_{\mu} \ ^{t}Q_{C_{\mu}} & X_{C_{\mu-1}} \cdots C_{1}T_{g} \end{cases} \end{split}$$

Furthermore we have

$$\begin{split} &\sum_{\nu} {}^{t}Q_{D_{\nu}}(f(s_{\nu}) - f(D_{\nu-1} \cdots D_{1}C_{j} \cdots C_{1}T_{g}(u_{0})) \\ &= \sum_{\nu} {}^{t}Q_{D_{\nu}}f(s_{\nu}) - \sum_{\nu} {}^{t}Q_{D_{\nu}}M(D_{\nu-1} \cdots D_{1}C_{j} \cdots C_{1}T_{g})f(u_{0}) \\ &- \sum_{\nu} {}^{t}Q_{D_{\nu}}X_{D_{\nu-1}}\cdots D_{1}C_{j}\cdots C_{1}T_{g}. \end{split}$$

We denote by Ψ the sum of the first four terms of (9). Set

$$\begin{split} N_1 &= \sum_{\lambda=1}^g {}^t (M(A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1}) - M(T_{\lambda-1}))Q_{A_{\lambda}} \\ &+ \sum_{\lambda=1}^g {}^t (M(B_{\lambda}A_{\lambda}T_{\lambda-1}) - M(A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1}))Q_{B_{\lambda}^{-1}}, \\ N_2 &= \sum_{\mu=1}^j {}^t M(C_{\mu-1} \cdots C_1T_g)Q_{C_{\mu}}, \quad \text{and} \\ N_3 &= \sum_{\nu=1}^k {}^t M(D_{\nu-1} \cdots D_1C_j \cdots C_1T_g)Q_{D_{\nu}}. \end{split}$$

Then we have

$$\begin{split} N_1 &= \sum_{\lambda=1}^g (Q_{T_{\lambda-1}} - Q_{T_{\lambda}}), \\ N_2 &= \sum_{\mu=1}^j (Q_{C_{\mu}C_{\mu-1} \cdots C_1 T_g} - Q_{C_{\mu-1} \cdots C_1 T_g}), \text{ and} \\ N_3 &= \sum_{\nu=1}^k (Q_{D_{\nu} \cdots D_1 C_j} \cdots C_1 T_g - Q_{D_{\nu-1} \cdots D_1 C_j} \cdots C_1 T_g), \end{split}$$

hence $N_1 - N_2 - N_3 = 0$, since $D_k \cdots D_1 C_j \cdots C_1 T_g = 1$, that is, $Q_{D_k \cdots D_1 C_j \cdots C_1 T_g} = 0$. Thus we have the desired result. Our proof is now complete.

Corollary 1 (Period inequality). Under the same assumptions as in Theorem 1 (let $\phi = \psi$).

$$\begin{split} \frac{1}{2i} \left\{ & \sum_{\pmb{\lambda}=1}^{g} {}^{t} \mathcal{Q}_{A_{\pmb{\lambda}}} [X_{A_{\pmb{\lambda}}^{-1} B_{\pmb{\lambda}}^{A_{\pmb{\lambda}}} T_{\pmb{\lambda}-1}} - X_{T_{\pmb{\lambda}-1}}] + \sum_{\pmb{\lambda}=1}^{g} {}^{t} \mathcal{Q}_{B_{\pmb{\lambda}}^{-1}} [X_{B_{\pmb{\lambda}}^{A_{\pmb{\lambda}}} T_{\pmb{\lambda}-1}} - X_{A_{\pmb{\lambda}}^{-1} B_{\pmb{\lambda}}^{A_{\pmb{\lambda}}} T_{\pmb{\lambda}-1}}] \\ & + \sum_{\mu=1}^{j} {}^{t} \mathcal{Q}_{C_{\mu}} \Bigg[e_{\mu}^{-1} \sum_{m=1}^{e_{\mu}-1} X_{C_{m}^{m}} - X_{C_{\mu-1} \cdots C_{1} T_{g}} \Bigg] \\ & - \sum_{\nu=1}^{k} {}^{t} \mathcal{Q}_{D_{\nu}} [X_{D_{\nu-1} \cdots D_{1} C_{j} \cdots C_{1} T_{g}}] + \sum_{\nu=1}^{k} {}^{t} \mathcal{Q}_{D_{\nu}} [(s_{\nu})] \right\} > 0. \end{split}$$

Corollary 2. Let Γ be a fuchsian group of the first kind, and let $\Delta_1 = U$. Let $f \in PE_{1-q}(U, \Gamma)$, $f^* \in E_{1-q}(U, \Gamma)$, $q \ge 2$, and E, E^* arbitrary representatives of f and f^* , respectively. Set $D^{2q-1}E = \phi$ and $D^{2q-1}E^* = \phi^*$. Let f and f^* be column vectors of length 2q-1 of the form (1) associated with E and E^* , respectively, and set pd_A $f(z) = X_A$ and pd_A $f^*(z) = X_A^*$ for each $A \in \Gamma$. Then

$$(\phi^*, \phi) = \frac{(-1)^{q-1}}{2i} \left\{ \sum_{\lambda=1}^{g} i \widetilde{X}_{A_{\lambda}} I'[X_{A_{\lambda}}^* 1_{B_{\lambda}} A_{\lambda} T_{\lambda-1} - X_{T_{\lambda-1}}^*] \right.$$

$$\left. + \sum_{\lambda=1}^{g} i \widetilde{X}_{B_{\lambda}} I'[X_{B_{\lambda}}^* A_{\lambda} T_{\lambda-1} - X_{A_{\lambda}}^* 1_{B_{\lambda}} A_{\lambda} T_{\lambda-1}] \right.$$

$$\left. + \sum_{\mu=1}^{j} i \widetilde{X}_{C_{\mu}^{-1}} I' \left[e_{\mu}^{-1} \sum_{m=1}^{e_{\mu}-1} X_{C_{\mu}}^* - X_{C_{\mu-1}}^* \cdots C_1 T_g \right] \right.$$

$$\left. - \sum_{\nu=1}^{k} i \widetilde{X}_{D_{\nu}^{-1}} I'[X_{D_{\nu-1}}^* \cdots D_1 C_j \cdots C_1 T_g] + \sum_{\nu=1}^{k} i \widetilde{X}_{D_{\nu}^{-1}} I'[S_{\nu}] \right\}.$$

Proof. If we set

$$\psi(z) = \frac{(2q-1)!}{2\pi i} \iint_{U} \frac{(\zeta - \overline{\zeta}/2i)^{2q-2} \overline{\phi(\zeta)} d\zeta \wedge d\overline{\zeta}}{(\zeta - z)^{2q}}, \quad z \in L,$$

then $\psi \in B_q(L, \Gamma)$ (Bers [3]), where L is the lower half-plane. Set $E_1(z) = \operatorname{Pot}(\phi)(z), \ z \in L$. Then by Bers [3], $D^{2q-1}E_1 = \psi$ on L. If for $z \in U$, we set $E_2(z) = \overline{E_1(\overline{z})}$ and $D^{2q-1}E_2(z) = \psi_1(z)$; then $\psi_1(z) = \overline{\psi(\overline{z})}, \ \psi_1 \in B_q(U, \Gamma)$ and $E_2 \in E_{1-q}(U, \Gamma)$. Then $\overline{\psi(\overline{z})} = c_q \phi(z), \ z \in U$ (see Kra [5, p. 554]), so that $\psi_1(z) = c_q \phi(z), \ z \in U$, where $c_q = (-1)^{q-1}(2q-2)!$. Hence $E_2 = c_q E$.

On the other hand if for each $A \in \Gamma$, we set $pd_A(Pot(\phi)) = Q_A$ and $pd_A(\S) = P_A$, then

$$E_{2}(Az)A'(z)^{1-q} - E_{2}(z) = \overline{E_{1}(\overline{Az})A'(\overline{z})^{1-q} - E_{1}(\overline{z})}$$

$$= \frac{1}{n!} {}^{t}\overline{Q}_{A}\binom{z}{1}^{n}, \quad z \in U,$$

and

$$E(Az)A'(z)^{1-q} - E(z) = \frac{1}{n!} {}^{t}P_{A} {\binom{z}{1}}^{n}, \quad z \in U,$$

where $\mathfrak{F}(z) = I'\widetilde{\mathfrak{f}(z)}$. Hence $\overline{\mathcal{Q}}_A = c_q P_A$. Using Lemma 3, we have

$${}^{t}P_{A} = {}^{t}(I'M(A^{-1})\widetilde{X}_{A})$$

$$= {}^{t}\widetilde{X}_{A}{}^{t}M(A)^{-1}I'$$

$$= -{}^{t}\widetilde{X}_{A-1}I'.$$

Substituting these into (I), we have the desired result. Our proof is now complete.

Remark. By using the same method as in the proof of Theorem 2 below, we can show that even in the case of q = 1, the above corollary remains valid.

4. Period relations and inequalities. By modifying Shimura's method [7], we can prove the following theorem from Lemmas 1, 2, 3 and 4. The proof is omitted here.

Theorem 2 (Period relation). Let Γ be the same group as in Theorem 1. Let $f_1, f_2 \in E_{\hat{1}-q}(\Delta, \Gamma, M), q \ge 1$ and $\mathfrak{F}_1, \mathfrak{F}_2$ arbitrary representatives of f_1 and f_2 , respectively. Set $\operatorname{pd}_A \mathfrak{F}_1 = P_A^{(1)}$ and $\operatorname{pd}_A \mathfrak{F}_2 = P_A^{(2)}$ for each $A \in \Gamma$. Then

$$\begin{split} &\sum_{\lambda=1}^{g} {}^{t}P_{A_{\lambda}}^{(1)}[\mathsf{M}(A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1})l'^{-1}\widetilde{P}_{A_{\lambda}^{-1}}^{(2)} - \mathsf{M}(T_{\lambda-1})l'^{-1}\widetilde{P}_{A_{\lambda-1}^{-1}}^{(2)}] \\ &+ \sum_{\lambda=1}^{g} {}^{t}P_{B_{\lambda}^{-1}}^{(1)}[\mathsf{M}(B_{\lambda}A_{\lambda}T_{\lambda-1})l'^{-1}\widetilde{P}_{B_{\lambda}A_{\lambda}T_{\lambda-1}}^{(2)} - \mathsf{M}(A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1})l'^{-1}\widetilde{P}_{A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1}}^{(2)}] \\ &+ \sum_{\mu=1}^{j} {}^{t}P_{C_{\mu}}^{(1)} \bigg[e_{\mu}^{-1} \sum_{m=1}^{e\mu-1} \mathsf{M}(C_{\mu}^{m})l'^{-1}\widetilde{P}_{C_{\mu}^{-1}}^{(2)} - \mathsf{M}(C_{\mu-1} \cdots C_{1}T_{g})l'^{-1}\widetilde{P}_{C_{\mu-1}^{-1}}^{(2)} \cdots C_{1}T_{g} \bigg] \\ &- \sum_{\nu=1}^{k} {}^{t}P_{D_{\nu}}^{(1)}[\mathsf{M}(D_{\nu-1} \cdots D_{1}C_{j} \cdots C_{1}T_{g})l'^{-1}\widetilde{P}_{D_{\nu-1}^{-1}}^{(2)} \cdots D_{1}C_{j} \cdots C_{1}T_{g} \bigg] \\ &+ \sum_{\nu=1}^{k} {}^{t}P_{D_{\nu}^{-1}}^{(1)}[\mathsf{M}(S_{\nu}^{-1})] &= 0. \end{split}$$

Corollary 1 (Period relation for a fuchsian group). Let Γ be a fuchsian group of the first kind, and let $\Delta_1 = U$. Let f_1 , $f_2 \in E_{1-q}(\Delta, \Gamma, M)$, $q \ge 1$, and \mathfrak{F}_1 , \mathfrak{F}_2 arbitrary representatives of f_1 and f_2 , respectively and set $\mathfrak{F}_1 = I' \tilde{\mathfrak{F}}_1$ and $\mathfrak{F}_2 = I' \tilde{\mathfrak{F}}_2$. Set $\operatorname{pd}_A \tilde{\mathfrak{F}}_1 = X_A^{(1)}$ and $\operatorname{pd}_A \tilde{\mathfrak{F}}_2 = X_A^{(2)}$ for every $A \in \Gamma$. Then

$$\sum_{\lambda=1}^{s} {}^{t}\widetilde{\chi}_{A_{\lambda}^{-1}}^{(1)} I'[X_{A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1}}^{(2)} - X_{T_{\lambda-1}}^{(2)}]$$
(III)
$$+ \sum_{\lambda=1}^{g} {}^{t}\widetilde{\chi}_{B_{\lambda}}^{(1)} I'[X_{B_{\lambda}A_{\lambda}T_{\lambda-1}}^{(2)} - X_{A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1}}^{(2)}]$$

$$+ \sum_{\mu=1}^{j} {}^{t}\widetilde{\chi}_{C_{\mu}^{-1}}^{(1)} I'[e_{\mu}^{-1} \sum_{m=1}^{e_{\mu}-1} X_{C_{\mu}^{m}}^{(2)} - X_{C_{\mu-1}}^{(2)} \cdots C_{1}T_{g}]$$

$$- \sum_{\nu=1}^{k} {}^{t}\widetilde{\chi}_{D_{\nu}^{-1}}^{(1)} I'[X_{D_{\nu-1}\cdots D_{1}C_{j}\cdots C_{1}T_{g}}^{(1)}] + \sum_{\nu=1}^{k} {}^{t}\widetilde{\chi}_{D_{\nu}}^{(1)} I'[(s_{\nu}) = 0.$$

Remark. Especially, when q = 1,

$$\sum_{\lambda=1}^{g} (X_{B_{\lambda}}^{(1)} X_{A_{\lambda}}^{(2)} - X_{A_{\lambda}}^{(1)} X_{B_{\lambda}}^{(2)}) = 0.$$

For I'=1 and $X_{A-1}^{(i)}=-X_A^{(i)}$ (i=1,2) for all $A\in\Gamma$. This is the period relation for abelian integrals. We set $X_A=x_A+iy_A$, where x_A and y_A are real number vectors.

Corollary 2 (Period inequality). Let Γ be the same group as in the above corollary. Let $f \in E_{1-a}(U, \Gamma, M)$ and \mathcal{F} be representative of f, $q \ge 1$. Set

 $\mathfrak{F}=I'\mathcal{F}$, $(1/n!)D^{2q-1}\mathfrak{F}(z)(z)^n=\phi(z)$ and pd_A $\mathfrak{f}(z)=x_A+iy_A$ for every $A\in \Gamma$. If $\phi\neq 0$, then

$$\begin{split} &(-1)^q \left[\sum_{\lambda=1}^g {}^t \widetilde{\gamma}_{A_{\lambda}^{-1}} I^{I'}(x_{A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1}} - x_{T_{\lambda-1}}) \right. \\ &+ \sum_{\lambda=1}^g {}^t \widetilde{\gamma}_{B_{\lambda}} I^{I'}(x_{B_{\lambda}A_{\lambda}T_{\lambda-1}} - x_{A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1}}) + \sum_{\mu=1}^j {}^t \widetilde{\gamma}_{C_{\mu}^{-1}} I^{I'} \left[e_{\mu}^{-1} \sum_{m=1}^{e_{\mu}-1} x_{C_{m}^{m}} - x_{C_{\mu-1} \cdots C_{1}T_{g}} \right] \\ &- \sum_{\nu=1}^k {}^t \widetilde{\gamma}_{D_{\nu}^{-1}} I^{I'}[x_{D_{\nu-1} \cdots D_{1}C_{j} \cdots C_{1}T_{g}}] + \sum_{\nu=1}^k {}^t \widetilde{\gamma}_{D_{\nu}^{-1}} I^{I'}(\operatorname{Re}\left[(s_{\nu})\right)] > 0. \end{split}$$

Proof. Set

$$\begin{split} \Phi_{1} &= \sum_{\lambda=1}^{g} {}^{t} \widehat{x}_{A_{\lambda}^{-1}} l' [x_{A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1}} - x_{T_{\lambda-1}}] + \sum_{\lambda=1}^{g} {}^{t} \widehat{x}_{B_{\lambda}} l' [x_{B_{\lambda}A_{\lambda}T_{\lambda-1}} - x_{A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1}}] \\ &+ \sum_{\mu=1}^{j} {}^{t} \widehat{x}_{C_{\mu}^{-1}} l' \bigg[e_{\mu}^{-1} \sum_{m=1}^{e_{\mu}-1} x_{C_{\mu}^{m}} - x_{C_{\mu-1}} ... c_{1} T_{g} \bigg] - \sum_{\nu=1}^{k} {}^{t} \widehat{x}_{D_{\nu}^{-1}} l' [x_{D_{\nu-1}} ... c_{1} T_{g}] \\ &+ \sum_{\nu=1}^{k} {}^{t} \widehat{x}_{D_{\nu}^{-1}} l' \operatorname{Re} f(s_{\nu}), \end{split}$$

$$\begin{split} \Phi_2 &= \sum_{\lambda=1}^g {}^t \widetilde{x}_{A_{\lambda}^{-1}} l' [y_{A_{\lambda}^{-1} B_{\lambda} A_{\lambda} T_{\lambda-1}} - y_{T_{\lambda-1}}] + \sum_{\lambda=1}^g {}^t \widetilde{x}_{B_{\lambda}} l' [y_{B_{\lambda}^{A} A_{\lambda} T_{\lambda-1}} - y_{A_{\lambda}^{-1} B_{\lambda}^{A} A_{\lambda} T_{\lambda-1}}] \\ &+ \sum_{\mu=1}^j {}^t \widetilde{x}_{C_{\mu}^{-1}} l' \bigg[e_{\mu}^{-1} \sum_{m=1}^e y_{C_{\mu}^m} - y_{C_{\mu-1}} ... c_{1} T_g \bigg] - \sum_{\nu=1}^k {}^t \widetilde{x}_{D_{\nu}^{-1}} l' [y_{D_{\nu-1}} ... c_{1} T_g] \\ &+ \sum_{\nu=1}^k {}^t x_{D_{\nu}^{-1}} l' \operatorname{Im} f(s_{\nu}), \end{split}$$

$$\begin{split} \Phi_{3} &= \sum_{\lambda=1}^{g} {}^{t} \widetilde{\gamma}_{A_{\lambda}^{-1}} l^{t} [x_{A_{\lambda}^{-1} B_{\lambda}^{A_{\lambda}} T_{\lambda-1}} - x_{T_{\lambda-1}}] + \sum_{\lambda=1}^{g} {}^{t} \widetilde{\gamma}_{B_{\lambda}^{-1}} l^{t} [x_{B_{\lambda}^{A_{\lambda}} T_{\lambda-1}} - x_{A_{\lambda}^{-1} B_{\lambda}^{A_{\lambda}} T_{\lambda-1}}] \\ &+ \sum_{\mu=1}^{j} {}^{t} \widetilde{\gamma}_{C_{\mu}^{-1}} l^{t} \left[e_{\mu}^{-1} \sum_{m=1}^{e_{\mu}-1} x_{C_{\mu}^{m}} - x_{C_{\mu-1} \cdots C_{1}} T_{g} \right] - \sum_{\nu=1}^{k} {}^{t} \widetilde{\gamma}_{D_{\nu}^{-1}} l^{t} [x_{D_{\nu-1} \cdots D_{1}} C_{j} \cdots C_{1} T_{g}] \\ &+ \sum_{\nu=1}^{k} {}^{t} \widetilde{\gamma}_{D_{\nu}^{-1}} l^{t} \operatorname{Re} \left[(s_{\nu}), \right] \end{split}$$

$$\begin{split} & \Phi_{4} = \sum_{\lambda=1}^{g} {}^{t} \widetilde{y}_{A_{\lambda}^{-1}} I'[y_{A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1}} - y_{T_{\lambda-1}}] + \sum_{\lambda=1}^{g} {}^{t} \widetilde{y}_{B_{\lambda}} I'[y_{B_{\lambda}A_{\lambda}T_{\lambda-1}} - y_{A_{\lambda}^{-1}B_{\lambda}A_{\lambda}T_{\lambda-1}}] \\ & + \sum_{\mu=1}^{j} {}^{t} \widetilde{y}_{C_{\mu}^{-1}} I'[e_{\mu}^{-1} \sum_{m=1}^{e_{\mu}-1} y_{C_{\mu}^{m}} - y_{C_{\mu-1}}...c_{1}T_{g}] - \sum_{\nu=1}^{k} {}^{t} \widetilde{y}_{D_{\nu}^{-1}} I'[y_{D_{\nu-1}}...D_{1}C_{j}...c_{1}T_{g}] \\ & + \sum_{\nu=1}^{k} {}^{t} \widetilde{y}_{D_{\nu}^{-1}} I'[m](s_{\nu}). \end{split}$$

Combining the equations (II) and (III) in the case of $\phi = \psi \neq 0$, we have

$$\Phi_1 + i\Phi_2 - i\Phi_3 + \Phi_4 = 2i(-1)^{q-1} \|\phi\|^2$$

and

$$\Phi_1 + i\Phi_2 + i\Phi_3 - \Phi_4 = 0.$$

Thus $\Phi_1 = \Phi_4 = 0$ and $\Phi_3 = -\Phi_2 = (-1)^q \|\phi\|^2$. Since $(-1)^q \Phi_3 > 0$, we have the desired result.

Remark. Especially, when q = 1,

$$(-1)\sum_{\lambda=1}^{g}(y_{B_{\lambda}}x_{A_{\lambda}}-y_{A_{\lambda}}x_{B_{\lambda}})>0.$$

This is the period inequality for abelian integrals.

The following result of Kra [5] is obtained from the above corollary.

Corollary 3. Let Γ be the same group as in the above corollary. If X_A is real for every $A \in \Gamma$, then $X_A = 0$.

Proof. In Corollary 2 to Theorem 2, we have $y_{A_{\lambda}} = 0$, $y_{B_{\lambda}} = 0$ ($\lambda = 1, \dots, g$), $y_{C_{\mu}} = 0$ ($\mu = 1, \dots, j$) and $y_{D_{\nu}} = 0$ ($\nu = 1, \dots, k$), and so ϕ must be zero. Hence $X_{A} = 0$.

Finally we consider meromorphic Eichler integrals. We denote by $M_{1-q}(\Delta, \Gamma)$ the space of identified meromorphic Eichler integrals. Then we have the following:

Theorem 3. Let Γ be the same group as in Theorem 1. Assume, for the sake of simplicity, that the group has neither parabolic nor elliptic elements. Let $f \in M_{1-q}(\Delta, \Gamma)$, $q \ge 1$, and E an arbitrary representative of f. Let E have only one pole at u_1 in ω_0 with principal part $(1/z^m)$, $m \ge 1$. Let E^* be an arbitrary representative of f^* , $f^* \in E_{1-q}(\Delta, \Gamma)$ such that $D^{2q-1}E^* = \phi^* \in B_q(\Delta, \Gamma)$ has the representation $\phi^*(z) = (c_0 + c_1 z + \cdots) dz^q$ about u_1 . Let $\operatorname{pd}_A f = X_A$ and

 pd_A $f^* = X_A^*$ for each $A \in \Gamma$, where f and f^* are column vectors of length 2q - 1 of the form (1) associated with E and E^* , respectively. Then

Proof. We easily see that

$$\int_{z}^{t} |z|^{2} \left(\frac{1}{z}\right)^{n} \phi^{*}(z) dz = n! \int_{z}^{t} |E(z)| \phi^{*}(z) dz = 2\pi i n! c_{m-1}.$$

By using the same way as in Theorem 2, we see that the left-side hand is equal to

$$\begin{split} \sum_{\pmb{\lambda}=1}^{g} \left[({}^{t}\widetilde{X}_{A_{\widehat{\pmb{\lambda}}}^{-1}}I'X_{B_{\widehat{\pmb{\lambda}}}}^{*} - {}^{t}\widetilde{X}_{B_{\widehat{\pmb{\lambda}}}^{-1}}I'X_{A_{\widehat{\pmb{\lambda}}}}^{*}) + ({}^{t}(\widetilde{X}_{A_{\widehat{\pmb{\lambda}}}} - \widetilde{X}_{B_{\widehat{\pmb{\lambda}}}^{-1}})I'M(A_{\widehat{\pmb{\lambda}}})X_{T_{\widehat{\pmb{\lambda}}-1}}^{*}) \right. \\ & + {}^{t}(\widetilde{X}_{A_{\widehat{\pmb{\lambda}}}^{-1}} - \widetilde{X}_{B_{\widehat{\pmb{\lambda}}}})I'M(B_{\widehat{\pmb{\lambda}}})X_{T_{\widehat{\pmb{\lambda}}}}^{*} \right]. \end{split}$$

Remark. Let $\widetilde{\Delta}$ be a finite sum of nonequivalent simply connected components $\Delta_1, \Delta_2, \dots, \Delta_t$, that is, $\widetilde{\Delta} = \bigcup_{i=1}^t \Delta_i$, where $\Delta_i \neq A(\Delta_j)$ $(i \neq j)$ for any $A \in \Gamma$. Then we obtain similar results as above.

REFERENCES

- L. V. Ahlfors, Finitely generated Kleinian groups, Amer. J. Math. 86 (1964), 413–429; 87 (1965), 759. MR 29 #4890; MR 31 #4906.
- 2. ——, The structure of a finitely generated Kleinian group, Acta Math. 122 (1969), 1-17. MR 38 #6063.
- 3. L. Bers, Inequalities for finitely generated Kleinian groups, J. Anal. Math. 18 (1967), 23-41. MR 37 #5383.
- 4. M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z. 67 (1957), 267-298. MR 19, 740.
- I. Kra, On cohomology of kleinian groups, Ann. of Math. (2) 89 (1969), 533-556.
 MR 41 #8656a.
- 6. ———, On cohomology of kleinian groups. II, Ann. of Math. (2) 90 (1969), 576—590. MR 41 #8656b.
- 7. G. Shimura, Sur les intégrales attachées aux formes automorphes, J. Math. Soc. Japan 11 (1959), 291-311. MR 22 #11126.

DEPARTMENT OF MATHEMATICS, SHIZUOKA UNIVERSITY, OHYA SHIZUOKA, JAPAN